2018
DOI: 10.1017/nmj.2018.30
|View full text |Cite
|
Sign up to set email alerts
|

On the Bilinear Square Fourier Multiplier Operators Associated With Function

Abstract: This paper will be devoted to study a class of bilinear square-function Fourier multiplier operator associated with a symbol $m$ defined by $$\begin{eqnarray}\displaystyle & & \displaystyle \mathfrak{T}_{\unicode[STIX]{x1D706},m}(f_{1},f_{2})(x)\nonumber\\ \displaystyle & & \displaystyle \quad =\Big(\iint _{\mathbb{R}_{+}^{n+1}}\Big(\frac{t}{|x-z|+t}\Big)^{n\unicode[STIX]{x1D706}}\nonumber\\ \displaystyle & & … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 26 publications
0
0
0
Order By: Relevance