International audienceThe goal of this paper is to describe the state of the art on the question of global existence of solutions to reaction-diffusion systems for which two main properties hold: on one hand, the positivity of the solutions is preserved for all time; on the other hand, the total mass of the components is uniformly controlled in time. This uniform control on the mass (or - in mathematical terms-on the L(1)-norm of the solution) suggests that no blow up should occur in finite time. It turns out that the situation is not so simple. This explains why so many partial results in different directions are found in the literature on this topic, and why also the general question of global existence is still open, while lots of systems arise in applications with these two natural properties. We recall here the main positive and negative results on global existence, together with many references, a description of the still open problems and a few new results as well