Modeling the geographical distribution of the phase and amplitude of the diurnal change is a challenging problem. This paper addresses the issues of modeling the diurnal mode of precipitation over the Tropics. Largely an early morning precipitation maximum over the oceans and an afternoon rainfall maximum over land areas describe the first-order diurnal variability. However, large variability in phase and amplitude prevails even within the land and oceanic areas. This paper addresses the importance of a multimodel superensemble for much improved prediction of the diurnal mode as compared to what is possible from individual models. To begin this exercise, the skills of the member models, the ensemble mean of the member models, a unified cloud model, and the superensemble for the prediction of total rain as well as its day versus night distribution were examined. Here it is shown that the distributions of total rain over the earth (tropical belt) and over certain geographical regions are predicted reasonably well (RMSE less than 18%) from the construction of a multimodel superensemble. This dataset is well suited for addressing the diurnal change. The large errors in phase of the diurnal modes in individual models usually stem from numerous physical processes such as the cloud radiation, shallow and deep cumulus convection, and the physics of the planetary boundary layer. The multimodel superensemble is designed to reduce such systematic errors and provide meaningful forecasts. That application for the diurnal mode appears very promising. This paper examines some of the regions such as the Tibetan Plateau, the eastern foothills of the Himalayas, and the Amazon region of South America that are traditionally difficult for modeling the diurnal change. In nearly all of these regions, errors in phase and amplitude of the diurnal mode of precipitation increase with the increased length of forecasts. Model forecast errors on the order of 6-12 h for phase and 50% for the amplitude are often seen from the member models. The multimodel superensemble reduces these errors and provides a close match (RMSE Ͻ 6 h) to the observed phase. The percent of daily rain and their phases obtained from the multimodel superensemble at 3-hourly intervals for different regions of the Tropics showed a closer match (pattern correlation about 0.4) with the satellite estimates. This is another area where the individual member models conveyed a much lower skill.