This article studies the rate of convergence of the weak Euler approximation for Itô diffusion and jump processes with Hölder-continuous generators. It covers a number of stochastic processes including the nondegenerate diffusion processes and a class of stochastic differential equations driven by stable processes. To estimate the rate of convergence, the existence of a unique solution to the corresponding backwardKolmogorov equation in Hölder space is first proved. It then shows that the Euler scheme yields positive weak order of convergence.