Abstract. We present a statistical analysis of freak waves 1 measured during the 203 h of observation on sea surface elevation at a location in the coastal zone of the Baltic Sea (2.7 m depth) during June-July 2008. The dataset contains 97 freak waves occurring in both calm and stormy weather conditions. All of the freak waves are solitary waves, 63% of them having positive shape, 17.5% negative shape and 19.5% sign-variable shape. It is suggested that the freak waves can be divided into two groups. Those of the first group, which includes 92% of the freak waves, have an amplification factor (ratio of freak wave height to significant wave height) which does not vary from significant wave height and has values largely within the range of 2.0 to 2.4; while for the second group, which contain the most extreme freak waves, amplification factors depend strongly on significant wave height and can reach 3.1. Analysis based on the Generalised Pareto distribution is used to describe the waves of the first group and lends weight to the identification of the two groups. It is suggested that the probable mechanism of the generation of freak waves in the second group is dispersive focussing. The time-frequency spectra of the freak waves are studied and dispersive tracks, which can be interpreted as dispersive focussing, are demonstrated.