“…By using Algorithm 1, we can obtain a set of arguments.A 1 = ({DancesWOP(d 3 )}, {DancesWOP(d 3 ))}, A 2 = ({DancesWP(d 3 )}, {DancesWP(d 3 ))}, A 3 = ({Tdances(d 1 )}, {Tdances(d 1 ))}, Algorithm 1: GenerateArguments Input: a KB K = (F, R, C) Output: The set of arguments SetofArgs 1 SetofArgs ← ∅; 2 Subsets ← AllConsistentSubset(F , R, C);// get all consistent subsets of F 3 for each E ∈ Subsets do ← Chase(R, conc); // saturate facts by using forward chaining (i.e. Skolem chase)[26] ← Argument(E, temp);7 SetofArgs ← TempArg; 8 return SetofArgs.A 4 = ({Tdances(d 1 )}, {DancesWP(d 1 ))}, A 5 = ({HasProps(d 1 , f l)}, {HasProps(d 1 , f l))}, A 6 = ({HasProps(d 1 , f l)}, {DancesWP(d 1 ))},A 7 = ({Mdances(d 1 )}, {Mdances(d 1 ))}, A 8 = ({Mdances(d 1 )}, {DancesWOP(d 1 ))}, A 9 = ({Mdances(d 2 )}, {Mdances(d 2 ))}, A 10 = ({Mdances(d 2 )}, {DancesWOP(d 2 )}), A 11 = ({HasProps(d 2 , hk)}, {HasProps(d 2 , hk)}), A 12 = ({HasProps(d 2 , hk)}, {DancesWP(d 2 )}).…”