All Russian mathematical portal V. V. Korableva, A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types G 2 , F 4 and E 6 , Sib.Abstract. For a finite group G, subgroups M1 and M2 of G and any i ∈ N, the subgroups (M1, M2) i and (M2, M1) i of M1 ∩ M2 are defined, inductively on i, as follows:The present paper is a continuation of the investigations by A.S. Kondrat'ev and V.I. Trofimov on a description of the set Π. It is obtained the description up to equivalence all triples (G, M1, M2) from Π in the case when G is a finite simple group of Lie type G2, F4 or E6, and M1 is a parabolic maximal subgroup of G.Keywords: finite simple group of Lie type, primitive parabolic permutation representation, maximal subgroup, mutual cores, strong version of Sims conjecture.Korableva, V.V., A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types G 2 , F 4 and E 6 . c ⃝ 2018 Кораблева В.В. Работа выполнена за счет гранта Российского научного фонда (проект 14-11-00061-П). Поступила 1 октября 2018 г., опубликована 7 декабря 2018 г.