Distance constrained labeling problems, e.g., L(p, q)-labeling and (p, q)-total labeling, are originally motivated by the frequency assignment. From the viewpoint of theory, the upper bounds on the labeling numbers and the time complexity of finding a minimum labeling are intensively and extensively studied. In this paper, we survey the distance constrained labeling problems from algorithmic aspects, that is, computational complexity, approximability, exact computation, and so on.