We prove that complete warped product Einstein metrics with isometric bases, simply connected space form fibers, and the same Ricci curvature and dimension are isometric. In the compact case we also prove that the warping functions must be the same up to scaling, while in the non-compact case there are simple examples showing that the warping function is not unique. These results follow from a structure theorem for warped product Einstein spaces which is proven by applying the results in our earlier paper He et al. (Asian J Math 2011) to a vector space of virtual Einstein warping functions. We also use the structure theorem to study gap phenomena for Dedicated to Wolfgang T. Meyer on the occasion of his 75th birthday.