This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A c c e p t e d m a n u s c r i p t
AbstractWe formulate a theoretical model to analyse the vascular remodelling process of an arterio-venous vessel network during solid tumour growth. The model incorporates a hierarchically organized initial vasculature comprising arteries, veins and capillaries, and involves sprouting angiogenesis, vessel cooption, dilation and regression as well as tumour cell proliferation and death. The emerging tumour vasculature is non-hierarchical, compartmentalized into well characterized zones and transports efficiently an injected drug-bolus. It displays a complex geometry with necrotic zones and "hot spots" of increased vascular density and blood flow of varying size. The corresponding cluster size distribution is algebraic, reminiscent of a self-organized critical state.The intra-tumour vascular-density fluctuations correlate with pressure drops in the initial vasculature suggesting a physical mechanism underlying hot-spot formation.