We discuss the eigenvalues
E
j
E_j
of Schrödinger operators
−
Δ
+
V
-\Delta +V
in
L
2
(
R
d
)
L^2(\mathbb {R}^d)
with complex potentials
V
∈
L
p
V\in L^p
,
p
>
∞
p>\infty
. We show that (A)
Re
E
j
→
∞
\operatorname {Re} E_j\to \infty
implies
Im
E
j
→
0
\operatorname {Im} E_j\to 0
, and (B)
Re
E
j
→
E
∈
[
0
,
∞
)
\operatorname {Re} E_j\to E\in [0,\infty )
implies
(
Im
E
j
)
∈
ℓ
q
(\operatorname {Im} E_j)\in \ell ^q
for some
q
q
depending on
p
p
. We prove quantitative versions of (A) and (B) in terms of the
L
p
L^p
-norm of
V
V
.