2021
DOI: 10.1007/s00012-021-00760-3
|View full text |Cite
|
Sign up to set email alerts
|

On the complexity of equational decision problems for finite height complemented and orthocomplemented modular lattices

Abstract: We study the computational complexity of the satisfiability problem and the complement of the equivalence problem for complemented (orthocomplemented) modular lattices L and classes thereof. Concerning a simple L of finite height, $$\mathcal {NP}$$ NP -hardness is shown for both problems. Moreover, both problems are shown to be polynomial-time equivalent to the same feasibility problem over the division ring D whenever L is the subspace lattice of a D-vector space of finite di… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?