2012
DOI: 10.1007/s10587-012-0022-9
|View full text |Cite
|
Sign up to set email alerts
|

On the composition factors of a group with the same prime graph as B n (5)

Abstract: On the composition factors of a group with the same prime graph as B n (5) Czechoslovak Mathematical Journal, Vol. 62 (2012) Abstract. Let G be a finite group. The prime graph of G is a graph whose vertex set is the set of prime divisors of |G| and two distinct primes p and q are joined by an edge, whenever G contains an element of order pq. The prime graph of G is denoted by Γ(G). It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if G is a finite gr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 23 publications
0
2
0
1
Order By: Relevance
“…В [7]- [9] определяются конечные группы с таким же графом простых чисел, как у PSL(2, ), где не является простым числом, и как у (3), где простое. А в работе [10] доказано, что если Γ( ) = Γ( (5)) при > 6, то имеет единственный неабелев композиционный фактор, изоморфный (5) или (5). Доказано, что простая группа 4 ( ), где = 2 > 2 (см.…”
Section: математические заметкиunclassified
“…В [7]- [9] определяются конечные группы с таким же графом простых чисел, как у PSL(2, ), где не является простым числом, и как у (3), где простое. А в работе [10] доказано, что если Γ( ) = Γ( (5)) при > 6, то имеет единственный неабелев композиционный фактор, изоморфный (5) или (5). Доказано, что простая группа 4 ( ), где = 2 > 2 (см.…”
Section: математические заметкиunclassified
“…A finite non-abelian simple group G is quasirecognizable by its prime graph, if each finite group P with Γ(P ) = Γ(G) has a unique non-abelian composition factor isomorphic to G [5]. The most recent lists of finite simple groups that are quasirecognizable by prime graph are presented in [2], [4], [6], [7] and [8].…”
Section: Introductionmentioning
confidence: 99%
“…In [20,21,22,24,27,28] finite groups with the same prime graph as PSL n (2), U n (2), D n (2), B n (3) and 2 D n (2) are obtained. In [3,4], it is proved that 2 D 2 m +1 (3) is recognizable by prime graph.…”
Section: Introductionmentioning
confidence: 99%