Using the symplectic tomography map, both for the probability distributions in classical phase space and for the Wigner functions of its quantum counterpart, we discuss a notion of Lyapunov exponent for quantum dynamics. Because the marginal distributions, obtained by the tomography map, are always well defined probabilities, the correspondence between classical and quantum notions is very clear. Then we also obtain the corresponding expressions in Hilbert space.Some examples are worked out. Classical and quantum exponents are seen to coincide for local and non-local time-dependent quadratic potentials. For non-quadratic potentials classical and quantum exponents are different and some insight is obtained on the taming effect of quantum mechanics on classical chaos. A detailed analysis is made for the standard map.Providing an unambiguous extension of the notion of Lyapunov exponent to quantum mechnics, the method that is developed is also computationally efficient in obtaining analytical results for the Lyapunov exponent, both classical and quantum. * on leave from the P. N. Lebedev Physical Institute,