Based on the AdS/CFT correspondence, string theory has given exact predictions for circular Wilson loops in U (N ) N = 4 supersymmetric Yang-Mills theory to all orders in a 1/N expansion. These Wilson loops can also be derived from Random Matrix Theory. In this paper we show that the result is generically insensitive to details of the Random Matrix Theory potential. We also compute all higher k-point correlation functions, which are needed for the evaluation of Wilson loops in arbitrary irreducible representations of U (N ).