2017
DOI: 10.48550/arxiv.1706.08314
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On the construction and convergence of traces of forms

Abstract: We elaborate a new method for constructing traces of quadratic forms in the framework of Hilbert and Dirichlet spaces. Our method relies on monotone convergence of quadratic forms and the canonical decomposition into regular and singular part. We give various situations where the trace can be described more explicitly and compute it for some illustrating examples. We then show that Mosco convergence of Dirichlet forms implies Mosco convergence of a subsequence of their approximating traces.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?