1999
DOI: 10.4171/zaa/891
|View full text |Cite
|
Sign up to set email alerts
|

On the Controllability of a Slowly Rotating Timoshenko Beam

Abstract: We consider a slowly rotating Timoshenko beam in a horizontal plane whose movement is controlled by the angular acceleration of the disk of a driving motor into which the beam is clamped. The problem to be solved is to transfer the beam from a position of rest into a position of rest under a given angle within a given time. We show that this problem is solvable, if the time of rotation prescribed is large enough.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
29
0
1

Year Published

2001
2001
2019
2019

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 30 publications
(30 citation statements)
references
References 6 publications
0
29
0
1
Order By: Relevance
“…Исследованию динами-ки механических систем, содержащих твердые тела и упругие стержни, посвящено большое количество работ. Упругие стержни рассматриваются как в рамках модели Эйлера-Бернулли [6][7][8][9], так и в рамках модели балки Тимошенко [10][11][12][13][14][15][16]. Изучают-ся задачи стабилизации и управления поведением таких механических систем.…”
Section: постановка задачиunclassified
“…Исследованию динами-ки механических систем, содержащих твердые тела и упругие стержни, посвящено большое количество работ. Упругие стержни рассматриваются как в рамках модели Эйлера-Бернулли [6][7][8][9], так и в рамках модели балки Тимошенко [10][11][12][13][14][15][16]. Изучают-ся задачи стабилизации и управления поведением таких механических систем.…”
Section: постановка задачиunclassified
“…In [8], the case γ = 1 and L = 1 is considered and controllability from rest to rest is proved. The initial state of the beam is described by the conditions…”
Section: /2 ρ )W(xt) and U(t) = (I ρ /ρ)ũ(T) For The Transformed Lmentioning
confidence: 99%
“…The control is performed by the angular acceleration of the axis, to which the beam is clamped. In [8], Krabs and Sklyar have shown controllability from a position of rest to a position of rest for the Timoshenko beam for a special parameter value (namely γ = 1).…”
Section: Introductionmentioning
confidence: 99%
“…Note that entries of Cramer matrix of this system depend on the first N eigenvalues λ n , which also have to be found numerically, but using the analytic formulas from [2] that can be done with any required level of precision. Thus we reduced the infinite dimensional problem of optimal control (1)- (5) to solving a system of a finite number of linear equations.…”
Section: Numerical Solution Of An Approximated Moment Problemmentioning
confidence: 99%
“…A number of works concerning various controllability problems for the model were published. In particular, Krabs and Sklyar [2] analyzed the appropriate non-Fourier trigonometric moment problem in 1999, inspired by Russel (e.g., [3]). They showed that the system is rest-to-rest controllable, under some conditions on the physical properties of the materials of the beam, if the time of steering is strictly greater than the certain critical Communicated by Günther Leugering.…”
Section: Introductionmentioning
confidence: 99%