Impact of atomic layer deposition temperature on HfO2/InGaAs metal-oxide-semiconductor interface properties J. Appl. Phys. 112, 084103 (2012) Method for investigating threshold field of charge injection at electrode/dielectric interfaces by space charge observation Appl. Phys. Lett. 101, 172902 (2012) An accurate characterization of interface-state by deep-level transient spectroscopy for Ge metal-insulatorsemiconductor capacitors with SiO2/GeO2 bilayer passivation J. Appl. Phys. 112, 083707 (2012) Electron transport properties of carbon nanotube-graphene contacts Appl. Phys. Lett. 101, 153501 (2012) Response to "Comment on 'Broadening of metal-oxide-semiconductor admittance characteristics: Measurement, sources, and its effects on interface state density analyses'" [J. Appl. Phys. 112, 076101 (2012) (111)-oriented Ge thin films on insulators are essential for advanced electronics and photovoltaic applications. We investigate Al-induced crystallization of amorphous-Ge films (50-nm thickness) on insulators focusing on the annealing temperature and the diffusion controlling process between Ge and Al. The (111)-orientation fraction of the grown Ge layer reaches as high as 99% by combining the low-temperature annealing (325 C) and the native-oxidized Al (AlO x ) diffusioncontrol layer. Moreover, the transmission electron microscopy reveals the absence of defects on the Ge surface. This (111)-oriented Ge on insulators promises to be the high-quality epitaxial template for various functional materials to achieve next-generation devices. V C 2012 American Institute of Physics. [http://dx