The main aim of the paper is to give the crossing number of the join product G + D n for the disconnected graph G of order five consisting of one isolated vertex and of one vertex incident with some vertex of the three-cycle, and D n consists of n isolated vertices. In the proofs, the idea of the new representation of the minimum numbers of crossings between two different subgraphs that do not cross the edges of the graph G by the graph of configurations G D in the considered drawing D of G + D n will be used. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph D n and with the path P n on n vertices for three other graphs.