1995
DOI: 10.1021/ci00023a007
|View full text |Cite
|
Sign up to set email alerts
|

On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures

Abstract: The hyper-Wiener index was recently introduced by Randic. The original definition given by Randié can be used for acyclic structures only. In this paper the definition of Randic was extended in two different fashions so as to be applicable for any connected structure. The formula provides an easy method to calculate the hyper-Wiener index for any graph.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
168
0
1

Year Published

1999
1999
2023
2023

Publication Types

Select...
7
2
1

Relationship

1
9

Authors

Journals

citations
Cited by 261 publications
(170 citation statements)
references
References 3 publications
1
168
0
1
Order By: Relevance
“…where d(u,v) denotes the distance between the vertices u and v in the graph G and the summations run over all pairs of vertices of G. Randić's original definition (1993) [27] of the hyper-Wiener index is applicable to trees only.…”
Section: Topological Indicesmentioning
confidence: 99%
“…where d(u,v) denotes the distance between the vertices u and v in the graph G and the summations run over all pairs of vertices of G. Randić's original definition (1993) [27] of the hyper-Wiener index is applicable to trees only.…”
Section: Topological Indicesmentioning
confidence: 99%
“…Na literatura de Química, o maior autovalor da matriz distância funciona como um descritor da estrutura deárvores e parece inferir sobre a extensão de ramificação e de pontos de ebulição de alcanos, quando estes são modelados porárvores, [3] e [78]. Além disso, o importanteíndice de Wiener, que veremos aqui,é definido a partir da matriz distância de um grafo e há inúmeros artigos publicados nesta direção, [3], [4], [35], [54], [55], [62], [66], [68] e [78]. …”
Section: Matriz Distânciaunclassified
“…As an extension of the Wiener index of a tree, Randić [2] [5] generalized the hyper-Wiener index so as to be applicable to any connected structure. Their formula for the hyper-Wiener index R of a graph G is…”
Section: Introductionmentioning
confidence: 99%