Seventy-five nights of fast-response wind and temperature data taken from a 300 m tower near Augusta, GA, were analyzed to determine the time-height structure of the nocturnal planetary boundary layer. The nights were selected from all four seasons over a wide range of synoptic conditions. Statistical summaries of Pasquill-Gifford stability, boundary-layer depth, nocturnal jet height, directional shear, gravity wave occurrence, and azimuthal meandering were obtained. The diversity of nocturnal conditions for the 75 cases resulted in histograms with broad peaks and slowly-varying distributions.To reduce the overall variance, we grouped the nights into two classes: steady nights and unsteady nights. Nights classified as "steady" maintained relatively uniform wind conditions. The data base was large enough to permit a further breakdown of the steady nights into three subclasses based on the height and strength of the wind maximum. "Unsteady" nights were more disturbed, showing timedependent features in the wind field and were also divided into three subclasses, depending on the predominant features observed: microfrontal passage, trend, or variable conditions. Although the subclasses were based mainly on wind structure, they correlated well with other NPBL properties, such as mixed-layer depth and inversion strength. Thus, the classification procedure tended to group together nights with similar dispersion characteristics.