Abstract:In this paper we study the identifiability of specific forms (symmetric tensors), with the target of extending recent methods for the case of 3 variables to more general cases. In particular, we focus on forms of degree 4 in 5 variables. By means of tools coming from classical algebraic geometry, such as Hilbert function, liaison procedure and Serre's construction, we give a complete geometric description and criteria of identifiability for ranks ≥ 9, filling the gap between rank ≤ 8, covered by Kruskal's crit… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.