The Dewar-Chatt-Duncanson (DCD) model [1][2][3] was introduced more than 60 years ago to describe the h 2 coordination of ethene to a coinage-metal atom. It gives a formally simple picture of the bond between an unsaturated substrate (S) and a transition metal (M), which involves the donation of p electrons from the substrate to empty ds orbitals of the metal (S!M) and the back donation from filled dp orbitals of the metal to empty substrate orbitals of the proper symmetry (M!S). In unsaturated organic systems, these empty orbitals have typically a p* anti-bonding character and their population tends to weaken the CÀC bond, but a reverse effect may also be observed if the empty orbitals have a bonding character, as recently observed. [4][5][6] The DCD model enjoys enormous popularity among chemists, as it represents the standard framework in which to analyze the electronic properties of ligands and metal fragments, especially with a view of rationalizing and controlling the activation of substrates in catalyzed chemical reactions. It appears also appropriate for the captodative description of the carbon bond. [7] Despite the fact that the DCD model is so well accepted, the assessment of the relative importance of the donation and back-donation contributions to the bond is often ambiguous and controversial. [8][9][10][11][12][13] The components of the DCD model are quantum-mechanically not well defined [14] and, while conclusions are commonly drawn from indirect experimental clues, they may be unreliable because no rigorous quantitative relationship, of either theoretical or empirical nature, has ever been established between observed properties and the DCD bond components. In fact, even just proving that the relative extent of donation and back donation can at all be extracted from experiments would be a highly desirable feat. Herein, we demonstrate that the DCD components can be effectively disentangled, and in principle quantitatively revealed, by measuring simple experimental observables. As a prototype case study we consider the bond between gold and ethyne.Such coordination systems have received increasing attention in the recent impetuous development of novel homogeneousphase catalytic systems for alkyne activation. [15][16][17][18][19] Our analysis, which builds on a clear-cut quantitative definition of the DCD components, aims, at first, to show how donation and back donation in [Au 3 -ethyne] + correlate with simple observables, the bending of the C À C À H moiety and the redshift of the CÀC stretching frequency of ethyne. Having established this correlation, we then show that it is surprisingly accurate for a large number of compounds in which ethyne interacts with other metal substrates.As mentioned above, the key component of our analysis is a satisfactory and objective definition of the donation and back-donation charges. This can be obtained starting from the charge-displacement function (CDF): [20] DqðzÞ ¼where D1 is the difference between the electron density of a complex and that of its non-inter...