In this paper, we study the properties of approximate solutions to a doubly nonlinear and degenerate diffusion equation, known in the literature as the diffusive wave approximation of the shallow water equations (DSW), using a numerical approach based on the Galerkin finite element method. This equation arises in shallow water flow models when special assumptions are used to simplify the shallow water equations and contains as particular cases the porous medium equation and the p-Laplacian. Diverse numerical schemes have been implemented to approximately solve the DSW equation and have been successfully applied as suitable models to simulate overland flow and water flow in vegetated areas such as wetlands; yet, no formal mathematical analysis has been carried out in order to study the properties of approximate solutions. In this study, we propose a numerical approach as a means to understand some properties of solutions to the DSW equation and, thus, to provide conditions for which the use of the DSW equation may be inappropriate from both the physical and the mathematical points of view, within the context of shallow water modeling. For analysis purposes, we propose a numerical method based on the Galerkin method and we obtain a priori error estimates between the approximate solutions and weak solutions to the DSW equation under physically consistent assumptions. We also present some numerical experiments that provide relevant information about the accuracy of the proposed numerical method to solve the DSW equation and the applicability of the DSW equation as a model to simulate observed quantities in an experimental setting.