2022
DOI: 10.5269/bspm.50820
|View full text |Cite
|
Sign up to set email alerts
|

On the divergence of two subseries $\ldots$] {on the divergence of two subseries of $\sum\frac{1}{p}$, and theorems of de La Vall\'{e}e Poussin and Landau-Walfis

Abstract: Let $K=Q(\sqrt{d})$ be a quadratic field with discriminant $d$. It is shown that $\sum\limits_{(\frac{d}{p})=+1,_{p~ prime}}\frac{1}{p}$ and $\sum\limits_{(\frac{d}{q})=-1,_{q~ prime}}\frac{1}{q}$ are both divergent. Two different approaches are given to show the divergence: one using the Dedekind Zeta function and the other by Tauberian methods. It is shown that these two divergences are equivalent. It is shown that the divergence is equivalent to $L_{d}(1)\neq 0$(de la Vall\'{e}e Poussin's Theorem).We prove … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?