2022
DOI: 10.1017/s0004972722000181
|View full text |Cite
|
Sign up to set email alerts
|

On the Divisor Function Over Nonhomogeneous Beatty Sequences

Abstract: We consider sums involving the divisor function over nonhomogeneous ( $\beta \neq 0$ ) Beatty sequences $ \mathcal {B}_{\alpha ,\beta }:=\{[\alpha n+\beta ]\}_{n=1}^{\infty } $ and show that $$ \begin{align*} \sum_{n\leq N,\ n\in\mathcal{B}_{\alpha,\beta}}d(n) =\alpha^{-1}\sum_{m\leq N}d(m) +O(N^{1-1/(\tau+1)+\varepsilon}), \end{align*} $$ where N is a sufficiently large integer, $\alpha $ is of fin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 9 publications
0
0
0
Order By: Relevance