The static buckling load of an imperfect circular cylindrical shell is here determined asymptotically with the assumption that the normal displacement can be expanded in a double Fourier series. The buckling modes considered are the ones that are partly in the shape of imperfection, and partly in the shape of some higher buckling mode. Simply-supported boundary conditions are considered and the maximum displacement and the static buckling load are evaluated nontrivially. The results show, among other things, that generally the static buckling load, S λ decreases with increased imperfection and that the displacement in the shape of imperfection gives rise to the least static buckling load.