2022
DOI: 10.3390/sym14030438
|View full text |Cite
|
Sign up to set email alerts
|

On the Dynamics of Higgins–Selkov, Selkov and Brusellator Oscillators

Abstract: A complete algebraic characterization of the first integrals of the Higgins–Selkov, Selkov and Brusellator oscillators is given here. The existence of symmetries sometimes forces the existence of such first integrals. The nonexistence of centers for such oscillators is also proved. In order to determine the Puiseux integrability of such systems, the multiple Puiseux solutions are also studied.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 27 publications
0
0
0
Order By: Relevance