In this study, we present a novel comparison between pore-structure (PS) and representative elementary volume (REV) methods for modelling fluid flow through porous media using a second-order lattice Boltzmann method (LBM). We employ the LBM to demonstrate the importance of the configuration of square obstacles in the PS method and compare the PS and the REV methods. This research provides new insights into fluid flow through porous media as a novel study. The behaviour of fluid flow through porous media has important applications in various engineering structures. The aim of this study is to compare two methods for simulating porous media: the PS method, which resolves the details of the solid matrix, and the REV method, which treats the porous medium as a continuum. Our research methodology involves using different arrangements of square obstacles in a channel including in-line, staggered and random for the PS method and a porosity factor and permeability value for the REV method. We found that the porosity and obstacle arrangement have significant effects on the pressure drop, permeability and flow patterns in the porous region. While the REV method cannot simulate the details of fluid flow through pore structures compared to the PS method, it is able to provide a better understanding of the flow field details around obstacles (Tortuosity). This study has important applications in improving our understanding of transport phenomena in porous media. Our results can be useful for designing and optimizing various engineering systems involving porous media.