Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure.