The saccade literature has consistently reported that the presentation of a distractor remote to a target increases reaction time (i.e., the remote distractor effect: RDE). As well, some studies have shown that a proximal distractor facilitates saccade reaction time. The lateral inhibition hypothesis attributes the aforementioned findings to the inhibition/facilitation of target selection mechanisms operating in the intermediate layers of the superior colliculus (SC). Although the impact of remote and proximal distractors has been extensively examined in the saccade literature, a paucity of work has examined whether such findings generalize to reaching responses, and to our knowledge, no work has directly contrasted reaching RTs for remote and proximal distractors. To that end, the present investigation had participants complete reaches in target only trials (i.e., TO) and when distractors were presented at "remote" (i.e., the opposite visual field) and "proximal" (i.e., the same visual field) locations along the same horizontal meridian as the target. As well, participants reached to the target's veridical (i.e., propointing) and mirror-symmetrical (i.e., antipointing) location. The basis for contrasting pro- and antipointing was to determine whether the distractor's visual- or motor-related activity influence reaching RTs. Results demonstrated that remote and proximal distractors, respectively, increased and decreased reaching RTs and the effect was consistent for pro- and antipointing. Accordingly, results evince that the RDE and the facilitatory effects of a proximal distractor are effector independent and provide behavioral support for the contention that the SC serves as a general target selection mechanism. As well, the comparable distractor-related effects for pro- and antipointing trials indicate that the visual properties of remote and proximal distractors respectively inhibit and facilitate target selection.