This paper presents investigations on the partial coalescence of an aqueous drop with an organicaqueous interface with and without surfactants. The organic phase was different silicone oils and the aqueous phase was a glycerol-water solution at different concentrations. It is found that when the surfactant Span 80 is introduced into the organic phase, the partial coalescence region is reduced in the Oh-Bo coalescence map. The range of the inertio-capillary regime reduces when surfactants are present, while the drop size ratio decreases with increasing surfactant concentration. The velocity fields inside the aqueous drop were studied with high speed particle image velocimetry for the first time. In the surfactant-free system, it was found that the inward motion of the fluids at the upper part of the drop favours the generation of a liquid cylinder at the early stages of coalescence. The pressure gradient created by the downward stream at the bottom of the liquid cylinder drives the pinch-off of the secondary drop. When surfactants are present, the rupture of the film between the drop and the interface occurs at an off-axis location. The liquid cylinder formed in this case is not symmetric and does not lead to pinch-off. It is also found that the vortices inside