This work is devoted to the study of gas-dynamic processes in the operation of climate control systems in the cabins of vehicles (HVAC), focusing on pressure values. This research examines the issue of assessing the required values of air overpressure inside the locomotive cabin, which is necessary to prevent gas exchange between the interior of the cabin and the outside air through leaks in the cabin, including protection against the penetration of harmful substances. The pressure boost in the cabin depends, among other things, on the external air pressure on the locomotive body, the power of the climate system fan, and the ratio of the input and output deflectors. To determine the external air pressure, the problem of train movement in a wind tunnel is considered, the internal and external fluids domain is considered, and the air pressure on the cabin skin is determined using numerical methods CFD based on the Navier–Stokes equations, depending on the speed of movement. The finite-volume modeling package Ansys CFD (Fluent) was used as an implementation. The values of excess internal pressure, which ensures the operation of the climate system under different operating modes, were studied numerically and on the basis of an approximate applied formula. In particular, studies were carried out depending on the speed and movement of transport, on the airflow of the climate system, and on the ratio of the areas of input and output parameters. During a numerical experiment, it was found that for a train speed of 100 km/h, the required excess pressure is 560 kPa, and the most energy-efficient way to increase pressure is to regulate the area of the outlet valves.