We numerically study the transverse flow-induced vibration (FIV) of elastically coupled tandem cylinders at Reynolds number
$100$
, using an in-house immersed boundary method-based solver in two-dimensional coordinates. While several previous studies considered tandem cylinders coupled through flow between them, a hitherto unexplored elastic coupling with fluid flow between them significantly influences FIV. We consider a wide range of gap ratio, reduced velocity, an equal mass ratio of both cylinders and zero damping. A systematic comparison between the classic elastically mounted tandem cylinders and elastically coupled cylinders is presented. The latter configuration exhibits two vibration modes, in-phase and out-of-phase, with corresponding natural frequencies approaching the Strouhal frequency of the system. We quantify variation of the following output variables with reduced velocity and gap ratios: cylinders’ displacement; fluid forces; amplitude spectral density of displacement and force signals; phase characteristics; energy harvesting potential; and discuss the wake characteristics using flow separation, pressure distribution, gap flow quantification, and dynamic mode decomposition characterization. The FIV response is classified into several regimes: initial desynchronization with and without gap vortices; final desynchronization; mixed mode; initial branch; lock-in; upper and lower branch; wake-induced vibration; galloping. We draw upon similarities of computed FIV characteristics with those of an isolated cylinder, in which the lower branch exhibits larger a amplitude than the upper branch. The elastically coupled cylinders show a galloping response similar to an isolated D-section cylinder. By invoking the elastic coupling, we demonstrate FIV suppression and augmentation for in-phase and out-of-phase systems. Our calculations show larger energy harvesting potential at reduced cost for elastically coupled cylinders.