2022
DOI: 10.48550/arxiv.2204.00352
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

On the Efficiency of Integrating Self-supervised Learning and Meta-learning for User-defined Few-shot Keyword Spotting

Abstract: User-defined keyword spotting is a task to detect new spoken terms defined by users. This can be viewed as a few-shot learning problem since it is unreasonable for users to define their desired keywords by providing many examples. To solve this problem, previous works try to incorporate self-supervised learning models or apply meta-learning algorithms. But it is unclear whether self-supervised learning and meta-learning are complementary and which combination of the two types of approaches is most effective fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?