1967
DOI: 10.1007/bf00281340
|View full text |Cite
|
Sign up to set email alerts
|

On the eigenvalues of the Laplacian in an unbounded domain

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
2

Year Published

1968
1968
2021
2021

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 14 publications
(6 citation statements)
references
References 7 publications
0
4
0
2
Order By: Relevance
“…This theorem will generalize, to an elliptic operator, some of the results stated in Hewgill [8] and Rozenbljum [11]. The method we shall use is to construct a fundamental singularity of a special type which will estimate the Green's function for the problem.…”
Section: π {/ G L 2 (E): A(x D)f E L 2 (E)} Tf=a(xd)f Fe^(t)mentioning
confidence: 80%
“…This theorem will generalize, to an elliptic operator, some of the results stated in Hewgill [8] and Rozenbljum [11]. The method we shall use is to construct a fundamental singularity of a special type which will estimate the Green's function for the problem.…”
Section: π {/ G L 2 (E): A(x D)f E L 2 (E)} Tf=a(xd)f Fe^(t)mentioning
confidence: 80%
“…Die Menge U Q x R sei so gewahlt, daB Q x [0, a] U gelte für alle N > N0 und festes a> 0. Die Funktion 0, ist eineindeutig für • alle E [0, a] und durch Rechnung folgt, daB es eine Konstante M> 0 gibt, so daB -S (5) für alle (x 1) E U gilt. AuBerdeni gelten die Beziehungen…”
Section: Untersuehung Des Spektrunisunclassified
“…schen Randbedingtngen in unbeschränkten Gebieten nieht erfilllt zu sein, vie G. W. ROSENBLUM in [6] gezeigt und in diesenl Fall' asymptotische Formeln für bestitnmte Gebiete Q mit mes (Q)= oc angegehen hat. Eine asvmptotische Formel für unbeschrdnkte Gebiete der Dimension zwei für den Laplace-Operator mit Dirichletschen Randbedingungen wurde in [5] bewiesen.…”
unclassified
“…The asymptotic distribution of eigenvalues of the Laplace operator with zero boundary conditions in a quasi-bounded domain has been studied by Clark [1], Hewgill [4], and Glazman and Skacek [2]. It seems to the author that any true asymptotic formula for N(h) even in the case of such a simple domain as (1.2) has not been known.…”
Section: A?i-00mentioning
confidence: 99%