Various graphite additives were incorporated into the positive paste in a range of amounts to study and compare their effects on the positive active mass utilization of lead-acid batteries. Four types of graphite—two anisotropic, one globular, and one fibrous—were investigated by SEM, XRD, and Raman spectroscopy. Their physico-chemical properties were correlated to the electrochemical performances of 2 V test batteries under a wide range of conditions. This works presents the influence of graphite additives’ structural order, phase composition, particle size, morphology, and surface area on the formation, initial cycling, and electrochemical utilization of the positive plate. The effects of various graphite on electrochemical performance were investigated using SEM, mercury porosimetry, and TGA/DSC to correlate the function of graphite on the positive active mass utilization of the lead-acid battery.