Massive multiple antenna systems in conjunction with millimeter (mmWave) communication have gained tremendous attention in the recent years owing to their high speed data delivery. However, security in these networks has been overlooked; thereby necessitating a comprehensive study. This paper analyzes the physical layer security performance of the downlink of a massive multiple-input multiple-output (MIMO)-based hybrid heterogeneous network (HetNet) where both mmWave and sub-6 GHz small cells coexist. Specifically, a tractable approach using stochastic geometry is proposed to analyze the secrecy outage probability, secrecy energy efficiency (SEE) and secrecy spectrum efficiency (SSE) of the hybrid HetNets. Our study further characterizes the impact of large antenna arrays, directional beamforming gains, transmit power, and cell density on the above mentioned secrecy performance measures. The results show that at low transmit power operation, the secrecy performance enhances for higher small cell density. It has also been observed that the higher directivity gains at mmWave cells lead to a drop in secrecy performance of the network; thus a tradeoff exists between better coverage or secrecy.This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/. This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2019.2956433, IEEE Transactions on Green Communications and Networking complex solution for the protection of confidential information in complex wireless networks [8]. Particularly, PLS in massive MIMO-enabled hybrid HetNets with mmWave small cells is important since the aforementioned networks present the most common deployment scenario for the future 5G communication networks. This paper analyses the PLS in massive MIMO-enabled hybrid HetNets by digging into unique advantageous properties of massive MIMO and mmWave channel.