An exact solution to the bending of variable-thickness orthotropic plates is developed for a variety of boundary conditions. The procedure, based on a Lévy-type solution considered in conjunction with the state-space concept, is applicable to inhomogeneous variable-thickness rectangular plates with two opposite edges simply supported. The remaining ones are subjected to a combination of clamped, simply supported, and free boundary conditions, and between these two edges the plate may have varying thickness. The procedure is valuable in view of the fact that tables of deflections and stresses cannot be presented for inhomogeneous variable-thickness plates as for isotropic homogeneous plates even for commonly encountered loads because the results depend on the inhomogeneity coefficient and the orthotropic material properties instead of a single flexural rigidity. Benchmark numerical results, useful for the validation or otherwise of approximate solutions, are tabulated. The influences of the degree of inhomogeneity, aspect ratio, thickness parameter, and the degree of nonuniformity on the deflections and stresses are investigated.