2013
DOI: 10.4028/www.scientific.net/amm.392.188
|View full text |Cite
|
Sign up to set email alerts
|

On the Equilibrium Problem of a Soft Network Shell in the Presence of Several Point Loads

Abstract: We consider a spatial equilibrium problem of a soft network shell in the presence of several external point loads concentrated at some pairwise distinct points. A generalized statement of the problem is formulated in the form of integral identity. Then we introduce an auxiliary problem with the right-hand side given by the delta function. For the auxiliary problem we are able to find the solution in an explicit form. Due to this, the generalized statement of the problem under consideration is reduced to findin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
11
0
3

Year Published

2015
2015
2020
2020

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 35 publications
(14 citation statements)
references
References 5 publications
0
11
0
3
Order By: Relevance
“…Note that the generalized statement of physically non-linear and geometrically linear problem in the form of saddle problems, as well as a method for its solution were considered in [7][8][9][10]. The study of nonlinear problems of the shells theory, including the approximate methods for their solution in [11][12][13][14][15][16][17][18] is carried out.…”
Section: Introductionmentioning
confidence: 99%
“…Note that the generalized statement of physically non-linear and geometrically linear problem in the form of saddle problems, as well as a method for its solution were considered in [7][8][9][10]. The study of nonlinear problems of the shells theory, including the approximate methods for their solution in [11][12][13][14][15][16][17][18] is carried out.…”
Section: Introductionmentioning
confidence: 99%
“…Отметим, что физически нелинейные задачи теории обо-лочек изучены в [37-43], в том числе задачи теории мягких сетчатых оболочек -в [44,45]. Численное решение геометрически нелинейных задач и физически линейных задач об из-гибе трехслойных пластин с трансверсально-мягким заполнителем проводилось в [46-48].…”
Section: Introductionunclassified
“…В работах [9][10][11][12][13][14][15][16] изучены задачи об изгибе трехслойной пластины с трансверсально-мягким заполнителем в геометрически линейной и физически нелинейной постановке. Отметим, что физически нелинейные задачи теории мягких сетчатых оболочек исследованы в [17][18][19][20][21][22][23][24][25].…”
Section: Introductionunclassified