2005 International Conference on Cyberworlds (CW'05) 2005
DOI: 10.1109/cw.2005.69
|View full text |Cite
|
Sign up to set email alerts
|

On the error modeling of dead reckoned data in a distributed virtual environment

Abstract: In this paper, the authors aim to analyze the error of dead reckoned data generated from received data in a discrete temporal axis in a distributed virtual environment (DVE). That is, compared with the data received in continuous time, data acquired in discrete time has a certain degradation or uncertainty of information. Our way of analysis is to introduce a mathematical model of this degradation with regard to the metrics of the temporal interval. We introduced polynomial models for dead reckoning method bet… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2006
2006
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 15 publications
0
5
0
Order By: Relevance
“…Generally, our system is hindered more than helped by prediction. Previous works have shown the benefits of higher-order predictors can be outweighed by their noise [12], but we show this occurs even for low-order predictors when subject to highly non-linear conditions in real systems: namely, stochastic update-rates and user input. The timescales over which simple predictors work are those which the user is unlikely to notice anything, so long as a high message rate is maintained.…”
Section: Predictionmentioning
confidence: 56%
See 1 more Smart Citation
“…Generally, our system is hindered more than helped by prediction. Previous works have shown the benefits of higher-order predictors can be outweighed by their noise [12], but we show this occurs even for low-order predictors when subject to highly non-linear conditions in real systems: namely, stochastic update-rates and user input. The timescales over which simple predictors work are those which the user is unlikely to notice anything, so long as a high message rate is maintained.…”
Section: Predictionmentioning
confidence: 56%
“…Further, the return of increasing complexity is limited. For example, Singhal & Cheriton [49] and Lau & Lee [25] demonstrate sensitivity to unmodelled terms, however Hanawa & Yonekura [12] showed better results with lower polynomial-order models. Meng et al [31] noted the context sensitivity of this and proposed a hybrid system that would switch order dynamically.…”
Section: Predictionmentioning
confidence: 99%
“…They extrapolated motion based on previous time-stamped samples, including a second-order predictor to support curved motion and a convergence algorithm to reduce spatial jitter. Hanawa & Yonekura [30] analysed zero, one, and second order interpolation polynomials in Lagrange form 1 . Hanawa & Yonekura [31] followed up with a Taylor expansion of 1.…”
Section: Extrapolationmentioning
confidence: 99%
“…Moreover, the position of the entity on the placed path after Δ t seconds can be approximated using Taylor series expansion, 33 R(t+Δt)R(t)+dRdtΔt+12normald2Rdt2Δt2. Letting sfalse(tfalse)=scriptRfalse(tfalse), vfalse(tfalse)=normaldscriptRnormaldt, and afalse(tfalse)=d2scriptRnormaldt2 yields the familiar kinematic equation R(t+Δt)s(t)+v(t)Δt+12a(t)Δt2, where s ( t ), v ( t ), and a ( t ) represent the entity's position, velocity, and acceleration at time t .…”
Section: Optimizing Plausibilitymentioning
confidence: 99%