2021
DOI: 10.1007/s00028-021-00675-5
|View full text |Cite
|
Sign up to set email alerts
|

On the evolution equation with a dynamic Hardy-type potential

Abstract: Motivated by the celebrated paper of Baras and Goldstein (1984), we study the heat equation with a dynamic Hardy-type singular potential. In particular, we are interested in the case where the singular point moves in time. Under appropriate conditions on the potential and initial value, we show the existence, non-existence and uniqueness of solutions, and obtain a sharp lower and upper bound near the singular point. Proofs are given by using solutions of the radial heat equation, some precise estimates for an … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance