Abstract-The use of chemicals to communicate among organisms has enabled countless species, from microorganisms, to colonies of insects, to mammals, to survive and flourish in their respective environments. Ants, arguably nature's most successful exploiters of this behavior, have evolved the use of pheromones to communicate in a wide range of situations, including mating, colony recognition, territory marking, and recruitment to new nest sites and food sources. We examine the evolution of the use of pheromones to aid in the location of, and migration to, a target area by groups of digital organisms. In an initial set of experiments, these organisms evolved efficient patterns of exploration that obviated the need for pheromones. When evolved in a more adverse environment, organisms again evolved effective search strategies, but also evolved the use of pheromones to enable the task to be completed by group members more quickly and with fewer movements. We also show that evolved organisms are more robust and better able to react to a change in the environment than a handbuilt solution. This work demonstrates the complexities that exist in the evolution of pheromone-enabled cooperation and provides insight into the behaviors executed by seemingly simple organisms in nature.