2016
DOI: 10.1016/j.jat.2015.08.002
|View full text |Cite
|
Sign up to set email alerts
|

On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions

Abstract: АннотацияFor an interval E = [a, b] on the real line, let µ be either the equilibrium measure, or the normalized Lebesgue measure of E, and let V µ denote the associated logarithmic potential. In the present paper, we construct a function f which is analytic on E and possesses four branch points of second order outside of E such that the family of the admissible compacta of f has no minimizing elements with regard to the extremal theoretic-potential problem, in the external field equals V −µ .Bibliography: 35 … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
3
0
3

Year Published

2016
2016
2021
2021

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 21 publications
(7 citation statements)
references
References 23 publications
1
3
0
3
Order By: Relevance
“…Another theorem proved in this paper extends the result from [13] on the existence of functions with four second-order branch points for which the existence problem has no positive solution to the case of functions that have only two second-order branch points. Namely, we prove the following theorem.…”
Section: Formulation Of the Resultssupporting
confidence: 66%
See 2 more Smart Citations
“…Another theorem proved in this paper extends the result from [13] on the existence of functions with four second-order branch points for which the existence problem has no positive solution to the case of functions that have only two second-order branch points. Namely, we prove the following theorem.…”
Section: Formulation Of the Resultssupporting
confidence: 66%
“…Moreover, it turns out that even for the simplest (not degenerate to a point) continuum E = [−1, 1] and the equilibrium measure μ (or the normalized Lebesgue measure and other measures of sufficiently general type) on E, there exist functions f ∈ A(E) such that equality (1.7) holds for no compact set F ∈ K E,f . In [13], one of such functions is indicated; it has four second-order branch points, of which two lie in {|z| ≤ r} ∩ {Im z > 0} and the other two lie in {|z| ≤ r} ∩ {Im z < 0}, where r is a sufficiently small positive number.…”
Section: Proceedings Of the Steklov Institute Of Mathematics Vol 290mentioning
confidence: 99%
See 1 more Smart Citation
“…Наша цель -доказать, что эта точная нижняя грань дости-гается на некотором компакте F ∈ K f . (Как показывает построенный в [16] пример функции f ∈ H([−1, 1]), аналитической в C \ {a 1 , a 2 , a 3 , a 4 }, нижняя точная грань может не достигаться в случае, когда µ -равновесная мера или нормированная мера Лебега на [−1, 1]).…”
Section: лемма 1 доказанаunclassified
“…Полное доказательство этих импликаций, при-чем в более общей ситуации, см. в [16].) Как отмечалось выше, утверждение 5 теоремы следует из утверждений 3 и 4 в силу доказанной в [9] общей теоремы, сформулированной в конце первого параграфа.…”
unclassified