We investigate the stability of spherically symmetric, purely magnetic, soliton and black hole solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These solutions are described by N − 1 magnetic gauge field functions ω j . We consider linear, spherically symmetric, perturbations of these solutions. The perturbations decouple into two sectors, known as the sphaleronic and gravitational sectors. For any N, there are no instabilities in the sphaleronic sector if all the magnetic gauge field functions ω j have no zeros and satisfy a set of N − 1 inequalities. In the gravitational sector, we prove that there are solutions which have no instabilities in a neighbourhood of stable embedded su(2) solutions, provided the magnitude of the cosmological constant |Λ| is sufficiently large. C 2016 AIP Publishing LLC. [http://dx