2022
DOI: 10.3390/math10030316
|View full text |Cite
|
Sign up to set email alerts
|

On the Existence of Super Efficient Solutions and Optimality Conditions for Set-Valued Vector Optimization Problems

Abstract: In this paper, by using the normal subdifferential and equilibrium-like function we first obtain some properties for K-preinvex set-valued maps. Secondly, in terms of this equilibrium-like function, we establish some sufficient conditions for the existence of super minimal points of a K-preinvex set-valued map, that is, super efficient solutions of a set-valued vector optimization problem, and also attain necessity optimality terms for a general type of super efficiency.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 44 publications
0
0
0
Order By: Relevance