2021
DOI: 10.1007/978-3-030-80599-9_27
|View full text |Cite
|
Sign up to set email alerts
|

On the Explainability of Automatic Predictions of Mental Disorders from Social Media Data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
3
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(6 citation statements)
references
References 17 publications
0
4
0
2
Order By: Relevance
“…El 100% de los documentos incluidos en este estudio se encuentra publicado en inglés. Por su parte, para el análisis de datos, algunas investigaciones utilizaron textos en su lengua materna (Katchapakirin et al, 2018, Eldin et al, 2019Priya Sri et al, 2021), otros usan textos en su lengua materna traducidos al inglés (López Úbeda et al, 2019;Mehedy et al, 2021;Chatrinan et al, 2021), y en otros, este dato no se indicaban específicamente en los estudios (Wang et al, 2020;Ricard & Hassanpour, 2021;Sabina et al, 2021;Ragheb et al, 2021) (Figura 4).…”
Section: Años De Publicación De Los Artículos País De Origen E Idioma...unclassified
“…El 100% de los documentos incluidos en este estudio se encuentra publicado en inglés. Por su parte, para el análisis de datos, algunas investigaciones utilizaron textos en su lengua materna (Katchapakirin et al, 2018, Eldin et al, 2019Priya Sri et al, 2021), otros usan textos en su lengua materna traducidos al inglés (López Úbeda et al, 2019;Mehedy et al, 2021;Chatrinan et al, 2021), y en otros, este dato no se indicaban específicamente en los estudios (Wang et al, 2020;Ricard & Hassanpour, 2021;Sabina et al, 2021;Ragheb et al, 2021) (Figura 4).…”
Section: Años De Publicación De Los Artículos País De Origen E Idioma...unclassified
“…Now a days the cost of detecting or diagnosing mental illness have improved so by that people can't invest more on that and that cases remain undetected for that the author in this used social media as a platform to detect mental illness [1] This makes the claim that user personality profiles can be used to tailor content, optimize campaigns, and enhance online advertising. [2] They present analysis of 2,34,735 supporter messages is to discover different strategies which correspond with clinical outcomes [3] Non-linear methods for regression was applied for achieving strong correlation between predicted and actual user income [4] Here survey responses and status updates from 24,904 Face book are used to develop a regression model that predicts users degree of depression based on their Face book status update [5] The author in this detect and refer the user's as soon as possible to professional help so they used BoSE representation which represent social media documents by a set of fine grained emotions automatically using a lexical resource [6] social media provides a great opportunity to increase the available data to researchers for better information in health field for a new approach is done by this the data is gathered quickly and cheaply and inform the necessary ethical discussion [7] Eating disorder are complex in mental disorders and they are responsible for highest mortality rate among mental illness for this a snowball sampling method is developed for automatically gathering of individuals who self identify as eating disorder. He are a new findings of how an eating disorder community develops on social media [8] They examine the potential for posting of social media which is a new type of lens in understanding depression.…”
Section: Literature Surveymentioning
confidence: 99%
“…The development of fair AI technologies in mental healthcare supports unbiased clinical decision-making. Moreover, interpretation [70], [71] and explanation [72], [73] are possible means for detecting bias so that it may be addressed. Furthermore, healthcare practitioners and researchers must collectively ensure effective evaluation mechanisms of AI technologies for mental health in support of trustworthy and fair decision-making.…”
Section: Ethical Considerationsmentioning
confidence: 99%