We study the Boussinesq approximation for the incompressible Euler equations using Lagrangian description. The conditions for the Lagrangian fluid map are derived in this setting, and a general method is presented to find exact fluid flows in both the two-dimensional and the three-dimensional case. There is a vast amount of solutions obtainable with this method and we can only showcase a handful of interesting examples here, including a Gerstner type solution to the two-dimensional Euler–Boussinesq equations. In two earlier papers we used the same method to find exact Lagrangian solutions to the homogeneous Euler equations, and this paper serves as an example of how these same ideas can be extended to provide solutions also to related, more involved models.