Este artículo presenta una revisión de metodologías comúnmente citadas en la literatura para la estimación de la incertidumbre, como es la metodología no estocástica de la Guía para la Expresión de la Incertidumbre de Medida (GUM), la cual provee una estructura de estimación con limitaciones en su implementación, como son: cálculo de derivadas parciales, suposición de linealidad de los modelos e identificación de las fuentes de incertidumbre y sus distribuciones de probabilidad. Por otro lado, se discuten otros métodos para estimar la incertidumbre, como son: Monte Carlo, Conjuntos Difusos, Intervalo Generalizado, Inferencia Bayesiana, Caos Polinomial y Bootstrap, que a diferencia de la GUM, presentan limitaciones de costo computacional y requieren de conocimientos más especializados para su implementación. El objetivo de este artículo es reportar el grado de aplicación y difusión de los métodos de estimación de la incertidumbre en las emisiones de fuentes fijas, encontrándose que la mayoría se enfoca en estudios usados para la elaboración de inventarios de gases de efecto invernadero (GHG), y son escasos los orientados a la medición de las emisiones de fuentes fijas usando monitoreos de lectura directa, como también los métodos definidos por la Agencia de Protección Ambiental de los Estados Unidos (US EPA). Se discute finalmente las fortalezas y debilidades que dan lugar al fomento de nuevas investigaciones en esta área del conocimiento.