A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg-Marchenko type uniqueness result and the evolution of the Weyl function for the corresponding focusing nonlinear Schrödinger equation are also derived. MSC(2010): 34B20, 34L40, 37K15.